

Monday, November 8th, 2021

Hydronic Primary-Secondary Piping – How Important are the Two Close Tees?

Monday Morning Minutes | by Norm Hall, November 8th, 2021

Every year we get questions about the importance of primary-secondary piping rules around boilers and coils. Recently, I also received a call about using a variable speed pump as the temperature control device on a heating coil. Gil Carlson from Bell & Gossett offered this rule about primary secondary piping, "Keep the common pipe equal to two close tees with no more than one foot of piping between them." How important is this rule?

Primary-Secondary Piping Rule

We begin by looking at a formal definition of <u>primary secondary from Gil Carlson in the Bell &</u> <u>Gossett manual:</u>

"When two piping circuits are interconnected, flow in one will cause flow in the other, to a degree depending on the pressure drop in the piping common to both."

Look at the simple sketch above. What if the coil and coil piping had a pressure drop of ten feet when flowing 10 GPM? If the pressure drop in the section called "common pipe" is "0" feet, there is no force to cause flow in the secondary. We would need a pump to cause any flow in the secondary.

Now look at the sketch again. I added a balance valve in the common pipe and caused ten feet of pressure drop. Now the gauges reflect that drop. Since the entrance to the secondary piping is at 70 feet and the outlet is at 60 feet, there must be some flow rate in the secondary pipe and coil causing ten feet of drop. Based on the example design parameters, the flow must be 10 GPM. I caused the flow because "...to a degree depending on the pressure drop in the piping common to both." You may be thinking, "Norm, I get it, but I do not put a balance valve in the common pipe so what's the deal." Another real example will help.

Real life example: Coil pump requires 100 GPM at 30 feet. The piping is 3". The common pipe is following the rules with two 3" branch flow tees and one foot of 3" pipe. If the pump is off, what would the flow rate be in the coil?

Let's start with the two branch tees and the pipe. I used the B&G system syzer and selected 3" steel pipe for 100 GPM. Then I went to the "Length/Pressure Drop" tab and entered my meager common pipe pieces.

Femp/Load Cv Flow/Pressu	re Drop Length/Pressure Dr	OP NSPH	la Circuit Setter						
Length/Pressure Drop	Help with To	Help with Total Equivalent Length (T.E.L.)**							
Pipe Length (T.E.L.)	27.45	27.45 Feet		Pipe Run 1.00 Feet					
27.45 Feet	8.37	Meters	Regular	90° Elbow	Qty	Poppet Fo	oot Valve w/ Strainer	Qty	
Fristian Lass			Long Radius	90° Elbow	Qty	Hinged Di	isc Foot Valve w/ Str	Qty	
2.39 Feet/100 Fe	Total Head L	055	Regular	45° Elbow	Qty	Pipe Entrance - Projecting			
2.00	0.66	Feet	Return	180° Elbow	Qty	Pipe Ent	trance - Sharp Edge	Qty	
Total Head Loss	0.28	PSI			_	Pipe Exit	- Projecting or Sharp	Qty	
0.66 Feet	0.20	Meters	Tee	Tee - Line Flow Qty					
	0.02	Bar	Tee - B	anch Flow 2	Qty		Angle Valve	Qty	
	1.96	kPa			_		Ball Valve	Qty	
	Pipe Size**	3 in	Lift O	eck Valve	Qty		Butterfly Valve	Qty	
	Row Rate	100.00	Swing Ch GPM	eck Valve	City		Globe Valve		
*If available, friction is carried from Flow/Pressure Drop Scale			Compon	ent #1		~	No Pipe Increaser	~	
			Compon	ent #2		~	No Pipe Reducer	~	
**Line Size/Flow from Flow/Pressure Drop Scale			Compon	ent #3		~	No Triple Duty Valve	~	
			Compon	ent #4		~	No Pump Suction Diffu	ser 🗸	

We can see that the total equivalent length is 27 feet. The pressure drop at 2.39 feet per 100 feet will be 0.66 feet. How much flow can that cause?

The Second Affinity Law

The second pump affinity law states that the flow varies as the square of the pressure drop. This gives the system curve we may see on variable speed pump submittals. If we look at the Cv tab in the system syzer, we see 15 GPM if there is 0.66 feet of pressure drop. This does not seem like much but remember, 10% of the flow will cause 50% of the heat in a hydronic coil. Obviously, the two-way control valve will close, and the heating will cease.

In this case, there will be no flow at 0.66 feet in the common pipe. The engineer chose to put a Bell & Gossett model 3DS-3B triple duty valve on the pump. This is a combination check, balance, and shut-off valve. The check portion is spring loaded and will require ½ PSIG or about 1.1 feet to crack open and start the flow. Therefore, at 0.66 feet of common head loss, there will be no flow in the secondary, **in this case.**

What if I Break The Rules?

Knowledge is a great thing. You can tell what will happen if you understand this blog. What if I put a butterfly valve in the common pipe, added two elbows, and made it four feet long because that was easy to pipe on the job? Let us see what we did.

Temp/Load Cv	Row/Pressure Drop	Length/Pressure Dro	P NSPHa	Circ	uit Setter				
Length/Pre	ssure Drop	Pipe Length			Help with Total Equivalent L	ength (T	T.E.L.)**		
Pipe Len	gth (T.E.L.)	71.62	Feet		F	ipe Run	5 Feet		
71	1.62 Feet	21.83	Meters		Regular 90° Elbow 2	Qty	Poppet Foot Valve w/ Strainer		Qty
Friction I	000				Long Radius 90° Elbow	Qty	Hinged Disc Foot Valve w/ Str		Qty
2.39 Feet/100 Feet	Total Head Loss			Regular 45° Elbow	Qty	Pipe Entrance - Projecting			
		1.71	Feet		Return 180° Elbow	Qty	Pipe Entrance - Sharp Edge		Qty
Total Hea	ad Loss	0.74	PSI		Tee - Line Flow	Pipe Exit - Projecting or Sharp		Qty	
	1./1 Feet	0.52	Meters		Tee - Branch Flow 2	Qty	Angle Value		Ohv
		0.05	bar kPa				Ball Valve		Qty
		5.11	Krd		Lift Check Valve	Qty	Butterfly Valve	1	Qty
		Pipe Size**	3 in		Swing Check Valve	Qty	Gate Valve		Qty
		Flow Rate	100.00	GPM			Globe Valve		Qty
*If available, friction is carried from Row/Pressure Drop Scale			Component #1		No Pipe Increaser		~		
Martin Business Presses Press				Component #2		✓ No Pipe Reducer		~	
Line Size/Flo	"Line Size/Flow from Flow/Pressure Drop Scale				Component #3		No Triple Duty Valve	•	~
					Component #4		No Pump Suction Di	ffuser	~

We can see that the pressure drop tripled. The triple duty valve will lift off it is seat and we will have flow in the secondary. If this were a boiler system with 10 feet of pressure drop and there was no triple duty valve, the flow in the boiler would be reduced by about 10%. That might be enough to void the warranty on a water tube boiler. Conversely, if you have two close tees and no valves but have to add a few feet of pipe, it will not make a significant difference. It is important to know the rules.

Next week, the R. L. Deppmann Monday Morning Minutes will look at the second call I received. Can I use a variable speed pump to control the air temperature from the coil?