

Monday, December 21, 2020

Net Positive Suction Head (NPSH) Part 3 of 5 –NPSH Available

Monday Morning Minutes | by Norm Hall, December 21, 2020

The available cooling tower pump NPSH or net positive suction head is a function of the pan elevation, friction, and temperature. Sometimes the combination of these things will hurt you. Today, the R. L. Deppmann Monday Morning Minutes looks at calculating the available pressure at the pump.

This article will start by looking at the formula for calculating the available NPSH for an open or closed system during design. Then we will show you an easy method using the Bell & Gossett System Syzer calculator.

$NPSHA = HA \pm HZ - HF - HVP$

Net Positive Suction Head Available Formula

• HA is the available absolute pressure in feet at the tower or condensate water surface or, in a closed hydronic system, the expansion tank pressure.

- HZ is the elevation of the water surface or expansion tank above (+) or below (-) the pump suction **in feet.**
- **HF** is the piping and fitting friction loss **in feet** from the water surface or expansion tank to the pump suction.
- **HVP** is the absolute vapor pressure of the fluid **in feet** at the pump suction temperature.

Bell & Gossett has a nice explanation of this in the article **Determining NPSHA**.

Using the B&G System Syzer for NPSHA

Look at the simple system piping example shown above. This example will use the 1000 GPM at 40' pump from part 2 of this series. The pump NPSH required with allowances and safety factors was 23 feet. Use the system syzer to determine the NPSHA.

Step 1: Use your chosen pipe size and flow rate at the proper temperature and enter them under the **flow/pressure drop** tab.

Cleveland | Detroit | Grand Rapids | Saginaw Deppmann.com | P:800.589.6120 | F:248.354.3763

and Strate		HANS MILLING	0	
emp/Load C	Elow/Press	ra Drop Leventh	/Pressure Drop NSPHa	Circuit Setter
How/Press	ure Drop Relatio	onship	Pressure Drop NSPHa	ASHRAE Information
Pipe Size		Pipe Material		<2000 V Operation Range Hours/Year
8 in ~		Steel Pipe V		Variable Flow Operation Other Operation
1000.00 GPM		1.51 Feet/100 Feet		
		Velocity		ASHRAE 90.1-2010 Max Rate for Pipe Size Selected
		6.42	Feet/Sec	1200 GPM
			4" is Schedule 40 6" is Schedule 30	Annual Energy Cost Cost/Kw Hour Pipe Length (T.E.L.) 0.10 \$/KwHr 557.35 Feet
1000	GPM	488,006	Reynolds Number	Est. Pump/Driver Eff
133.70	Cubic Feet/Min	0.000226	Relative Roughness ɛ/D	80 %
227.00	Cubic Meters/Hr	Transition Flow	Flow Type	Hours of Operaion/Year 8760
63.00	Liters/Sec	0.0157	Friction Factor	Annual Energy Cost*
3,785.00	Liters/Min	6.42	Feet/Sec	\$1,731
	Liters/Hr		Meters/100 Meters	*Pump/Driver cost at 100% load

Step 2: Enter the pipe lengths and fittings in the Length/Pressure Drop tab.

Temp/Load Cv Flow/Pressure Drop	Length/Pressure Drop NSPHa Cir	cuit Setter
Length/Pressure Drop	Pipe Length	Help with Total Equivalent Length (T.E.L.)**
Pipe Length (T.E.L.)	557.35 Feet	Pipe Run 50 Feet
557.35 Feet	169.88 Meters	Regular 90° Elbow 4 Oty Poppet Foot Valve w/ Strainer
		Long Radius 90° Elbow Qty Hinged Disc Foot Valve w/ Str
Friction Loss	Total Head Loss	Regular 45° Elbow Qty Pipe Entrance - Projecting
1.51 Feet/100 Feet	8.42 Feet	Return 180° Elbow Qty Pipe Entrance - Sharp Edge
Total Head Loss	3.63 PSI	Pipe Exit - Projecting or Sharp
8.42 Feet	2.57 Meters	Tee - Line Flow 2 Oty
	0.25 Bar	Tee - Branch Flow 1 Qty Angle Valve
	25.05 kPa	Ball Valve
	Pipe Size** 8 in	Lift Check Valve Qty Butterfly Valve
	Flow Rate 1000.00 GPM	Swing Check Valve Qty Gate Valve
	How Rate 1000.00 GPM	Globe Valve
*If available, friction is carried from Flow/Pre	ssure Drop Scale	clean strainer 1 PD (PSI) V No Pipe Increaser
	pulser is Unknown Pressen Drop.	Component #2 Reducer 8 x 6
**Line Size/Flow from Flow/Pressure Drop S	icale	Component #3 Vo Triple Duty Valve
		Component #4 V No Pump Suction Diffuser

Step 3: Enter the elevation from the minimum tower basin water level to the centerline of the pump suction in NPSHa tab.

	e Drop Length/Pressure Drop NSPHa Cir	
NPSHA Calculator NPSH Available to Pump 25.7 Feet	Location Elevation Sea Level Feet Pipe Friction Loss* 8.42 Feet Height of Dim Z 1.5 Feet Include Velocity Head**	System Type
	sint A to B. Brought over from PD scale.	

This pump selection required a modified NPSHR required of 23 feet. This pump installation has an available NPSH of 25.7 feet. This application will work fine.

It is VERY IMPORTANT for the engineer to spend the time to detail the suction piping and verify elevations. What would happen if the contractor used 8" pipe but reduced down to 6" for the valves and strainer at the pump suction? The friction loss would jump to 16 feet. The NPSHA drops to 18.2 feet. The pump would now be in trouble.

Check out the rest of the Net Positive Suction Head (NPSH) Series:

Part One - Terms and Definitions

Part Two - <u>NPSH Safety factors</u>