Monday, March 13, 2017

Steam Trap Operation: Steam and Steam Heat Exchangers Basics (Part 10)

For the last two weeks, R. L. Deppmann Monday Morning Minutes has explained how the float and thermostatic steam trap operates, offering some tips for troubleshooting problems in the field. This week we select a trap for the example used in this steam and

steam heat exchanger basics series.

Our example heat exchanger has a capacity of 2,000 pounds per hour (PPH) with 10 PSIG steam pressure to a modulating steam control valve. We will assume the steam pressure to the heat exchanger is 5 PSIG after the control valve pressure drop. We learned in the last two blogs that a float and thermostatic steam trap is the correct choice for this application.

Before we select the trap, I want to answer this question: Why Hoffman? Hoffman, a Xylem brand, manufactures

many quality steam traps. The F&T trap starts with hardened stainless steel (SS) seat and pins, SS float, lever, and thermostatic element. All of this is wrapped with a cast iron 30,000 PSI tensile body with grade 5 bolts. A durable, quality product for this aggressive duty.

Safety factors when selecting the Hoffman steam trap.

The selection starts with an appropriate safety factor applied to the 2000 PPH load. In modulating heating load applications, we recommend you use a minimum of a 1.5 safety factor. One reason there are safety factors applied to steam trap selections is the

catastrophic results if a trap is undersized. In part 8 of this series, we described the operation of the trap. If more PPH of condensate enters the trap than it is rated for, condensate will back up and damaging water hammer may occur. How can this happen?

Let's start with the heat exchanger itself. There

are fouling factors applied to shell and tube heat exchangers during the selection process. In an earlier R L Deppmann Monday morning Minutes article called *Heat Exchanger Fouling Factors* I explained how fouling factors could increase the surface area by 35% or more. In a cold startup, the log mean temperature difference (LMTD) of the heat exchanger could be twice as much as the design which again increases the PPH capacity of the heat exchanger. Both of these reasons may cause the heat exchanger or heating coil to use more PPH of steam if the steam control valve can pass it.

Steam control values are sized based on C_v , which is derived from the capacities needed. It is rare that the required C_v is met exactly — there is always some oversizing. In addition, during times of startup when the heat exchanger or coil can take more capacity, the control value can provide 10-15% more by dropping the outlet pressure. Add to that the effects of wet steam or superheat and the 1.5% safety factor does not seem so large. I'll talk more about this in later articles about pressure reducing values.

Selecting the Hoffman float and thermostatic steam trap.

Our example requires 2000 PPH in a low pressure 10 PSIG system. The 1.5 safety factor gives us a rated capacity of 3000 PPH. We use a differential of ½ PSIG. This differential is selected because the pressure in the shell may drop as low as "0" as discussed above and in the earlier *Condensate Drop Leg and Pipe Size: Steam and Steam Heat Exchanger Basics Part 4* blog article. Let's select a steam trap using the Hoffman Specialty Catalog HS-900F.

We will use a Hoffman model FT015H-8, which is a 2" "H" pattern float and thermostatic steam trap. The same model may be selected using the Hoffman steam trap selection software available through our selection and design tools web page link.

team Lo ifferent	oad with Safety ial Pressure	Factor added 300	10	Please, cli	ick the desired row to select a t	rap. Back to Condition
Trap 1	renthi visuuna					
Conc con	luc co		0.000 0000 0000	Cashavia	Ture Connection (the Alas)	
Unit	Model	Connection Size	Unnce Size (in.)	seat psig	i rap Capacity (ib/nr)	
Unit	Model 1 FT015H	Connection Size 2	Unifice Size (in.) 0.687	Seat psig 15	3150 6	
Unit	Model 1 FT015H 2 FT015X	Connection Size 2 2	0.687 0.97	5eat psig 15 15	3150 8000	
Unit	Model 1 FT015H 2 FT015X 3 FT030X	Connection Size 2 2 2	0.687 0.687 0.97 0.876	5eat psig 15 15 30	3150 8000 4600	
Unit	Model 1 FT015H 2 FT015X 3 FT030X 4 FT075X	Connection Size 2 2 2 2 2 2	0.687 0.687 0.97 0.876 0.585	5eat psig 15 15 30 75	3150 8000 4600 3150	
Unit	Model 1 FT015H 2 FT015X 3 FT030X 4 FT075X 5 FT015C	2 2 2 2 2 2 2 2 2.1/2	0.687 0.687 0.97 0.876 0.585 1.875	5ear psig 15 15 30 75 15	3150 8000 4600 3150 20000	
Unit	Model 1 FT015H 2 FT015X 3 FT030X 4 FT075X 5 FT015C 6 FT030C	Connection Size 2 2 2 2 2 2 2 2 1/2 2 1/2 2 1/2	0.687 0.687 0.97 0.876 0.585 1.875 1.625	3ear psig 15 15 30 75 15 30	11ap Capacity (ID/N) 3150 8000 4600 3150 20000 17000	
Unit	Model 1 FT015H 2 FT015X 3 FT030X 4 FT075X 5 FT015C 6 FT030C 7 FT075C	Connection Size 2 2 2 2 2 2 2 2 1/2 2 1/2 2 1/2 2 1/2	0.687 0.687 0.97 0.876 0.585 1.875 1.625 1.031	5eat psig 15 15 30 75 15 30 75	The Capacity (ID/II) 3150 8000 4600 3150 20000 17000 7700	
Unit	Model 1 FT015H 2 FT015X 3 FT030X 4 FT075X 5 FT015C 6 FT030C 7 FT075C 8 FT125C	Connection Size 2 2 2 2 2.1/2 2.1/2 2.1/2 2.1/2 2.1/2	0.687 0.687 0.97 0.876 0.876 0.875 1.875 1.625 1.031 0.797	15 15 30 75 15 30 75 30 75 125	Tap Capacity (ID/N) 3150 8000 4600 3150 20000 17000 7700 5300	

Next week the R. L. Deppmann Monday Morning Minutes will look at the strainers in steam and condensate systems.